14 research outputs found

    BSM-6G: Blockchain-based Dynamic Spectrum Management for 6G Networks: Addressing Interoperability and Scalability

    Get PDF
    The radio frequency spectrum serves as a fundamental resource for wireless communication, encompassing various frequency bands allocated for diverse services and applications. Dynamic spectrum management (DSM) is essential to optimise the utilisation of this limited and valuable natural resource, with the aim of improving performance and adapting to changing wireless communication demands. Traditional static spectrum allocation methods have shown inefficiencies, leading to spectrum scarcity and under-utilisation. To address these challenges, the integration of blockchain and Cognitive Radio (CR) technologies has emerged as a promising approach. Blockchain, with its decentralised and secure attributes, can improve transparency and trust in spectrum allocation processes, while CR enables intelligent spectrum sensing and allocation to maximise utilisation. However, this promising approach comes with its own critical challenges, especially when dealing with the 6th Generation (6G) mobile communication. These challenges are related to the fact that the blockchain ecosystem needs to be interoperable and scalable enough to be compatible with the 6G high-demand and substantial resources. Specifically, integrating blockchain with CR requires efficient interoperability techniques where blockchain can easily and effectively interact with the CR platforms as well as radio spectrum environments. Furthermore, the spectrum management system over 6G networks needs to be designed in a way where massive 6G resources can be accommodated and managed without having any service performance degradation. This paper introduces a novel radio spectrum management model in 6G networks, named as BSM-6G, which integrates blockchain technology with CR where interoperability is preserved and scalability is maximised. Specifically, the proposed BSM-6G model merges blockchain’s transparent record keeping with CR’s intelligent spectrum management capabilities. To overcome the interoperability issue, BSM-6G provides an interoperable blockchain Oracle approach which facilitates the real-time interaction among the blockchain platform, the CR, and any data sources off-chain. This paper details all the technical and procedural challenges when implementing the proposed interoperability Oracle approach. To address the scalability challenge, BSM-6G utilizes the Proof-of-History (PoH) consensus protocol to align with the requirements of DSM in advanced networks like Beyond 5th Generation (B5G) and 6G. Evaluation results indicate that BSM-6G offers viable and less complex blockchain Oracle integration architecture measured by the technical implementation of BSM-6G, as well as low interoperability cost measured by transaction response time and transaction fee cost. Compared to state-of-the-art spectrum-based blockchain systems, BSM-6G shows a high scalable DSM-based blockchain in 6G networks measured by transactions per second (TPS)

    An empirical comparison of the security and performance characteristics of topology formation algorithms for Bitcoin networks

    Get PDF
    There is an increasing demand for digital crypto-currencies to be more secure and robust to meet the following business requirements: (1) low transaction fees and (2) the privacy of users. Nowadays, Bitcoin is gaining traction and wide adoption. Many well-known businesses have begun accepting bitcoins as a means of making financial payments. However, the susceptibility of Bitcoin networks to information propagation delay, increases the vulnerability to attack of the Bitcoin network, and decreases its throughput performance. This paper introduces and critically analyses new network clustering methods, named Locality Based Clustering (LBC), Ping Time Based Approach (PTBC), Super Node Based Clustering (SNBA), and Master Node Based Clustering (MNBC). The proposed methods aim to decrease the chances of performing a successful double spending attack by reducing the information propagation delay of Bitcoin. These methods embody proximity-aware extensions to the standard Bitcoin protocol, where proximity is measured geographically and in terms of latency. We validate our proposed methods through a set of simulation experiments and the findings show how the proposed methods run and their impact in optimising the transaction propagation delay. Furthermore, these new methods are evaluated from the perspective of the Bitcoin network’s resistance to partitioning attacks. Numerical results, which are established via extensive simulation experiments, demonstrate how the extensions run and also their impact in optimising the transaction propagation delay. We draw on these findings to suggest promising future research directions for the optimisation of transaction propagation delays

    PVPBC: Privacy and Verifiability Preserving E-Voting Based on Permissioned Blockchain

    Get PDF
    Privacy and verifiability are crucial security requirements in e-voting systems and combining them is considered to be a challenge given that they seem to be contradictory. On one hand, privacy means that cast votes cannot be traced to the corresponding voters. On the other hand, linkability of voters and their votes is a requirement of verifiability which has the consequence that a voter is able to check their vote in the election result. These two contradictory features can be addressed by adopting privacy-preserving cryptographic primitives, which at the same time as achieving privacy, achieve verifiability. Many end-to-end schemes that support verifiability and privacy have the need for some voter action. This makes ballot casting more complex for voters. We propose the PVPBC voting system, which is an e-voting system that preserves privacy and verifiability without affecting voter usability. The PVPBC voting system uses an effective and distributed method of authorization, which is based on revocable anonymity, by making use of a permissioned distributed ledger and smart contract. In addition, the underlying PVPBC voting system satisfies election verifiability using the Selene voting scheme. The Selene protocol is a verifiable e-voting protocol. It publishes votes in plaintext accompanied by tracking numbers. This enables voters to confirm that their votes have been captured correctly by the system. Numerical experiments support the claim that PVPBC scales well as a function of the number of voters and candidates. In particular, PVPBC’s authorization time increases linearly as a function of the population size. The average latency associated with accessing the system also increases linearly with the voter population size. The latency incurred when a valid authentication transaction is created and sent on the DLT network is 6.275 ms. Empirical results suggest that the cost in GBP for casting and storing an encrypted ballot alongside a tracker commitment is a linear function of the number of candidates, which is an attractive aspect of PVPBC

    Security and performance evaluation of master node protocol based reputation blockchain in the bitcoin network.

    Get PDF
    Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbours without any knowledge about the underlying physical topology can cause a delay overhead in information propagation which makes the system vulnerable to double spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces a proximity-aware extension to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, which is based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In the MNBC protocol, physical internet connectivity increases as well as the number of hops between nodes decreases through assigning nodes to be responsible for maintaining clusters based on physical Internet proximity. Furthermore, a reputation-based blockchain protocol is integrated with MNBC protocol in order to securely assign a master node for every cluster. We validate our proposed methods through a set of simulation experiments and the findings show how the proposed methods run and their impact in optimising the transaction propagation delay

    High-level feature extraction for crowd behaviour analysis: a computer vision approach

    Get PDF
    The advent of deep learning has brought in disruptive techniques with unprecedented accuracy rates in so many fields and scenarios. Tasks such as the detection of regions of interest and semantic features out of images and video sequences are quite effectively tackled because of the availability of publicly available and adequately annotated datasets. This paper describes a use case scenario with a deep learning models’ stack being used for crowd behaviour analysis. It consists of two main modules preceded by a pre-processing step. The first deep learning module relies on the integration of YOLOv5 and DeepSORT to detect and track down pedestrians from CCTV cameras’ video sequences. The second module ingests each pedestrian’s spatial coordinates, velocity, and trajectories to cluster groups of people using the Coherent Neighbor Invariance technique. The method envisages the acquisition of video sequences from cameras overlooking pedestrian areas, such as public parks or squares, in order to check out any possible unusualness in crowd behaviour. Due to its design, the system first checks whether some anomalies are underway at the microscale level. Secondly, It returns clusters of people at the mesoscale level depending on velocity and trajectories. This work is part of the physical behaviour detection module developed for the S4AllCities H2020 project

    Security Analysis of Blockchain Layer-One Sharding Based Extended-UTxO Model

    No full text
    Blockchain technology facilitates the transfer of digital assets, accomplished through the distributed storage of a transaction ledger, allowing peer-to-peer participant nodes to agree on valid transactions based on their local records without the reliance on centralised infrastructure or trusted participants. Distributed ledgers are increasing in public adoption, which can be attributed to the permissionless infrastructure and a rise in decentralised finance (DeFi) protocols. In this growth, shortcomings in throughput and latency have been highlighted, especially when compared to traditional payment channels. The extended-UTXO (eUTXO) model offers the untapped potential to support a functionally scalable infrastructure by adopting qualities of both the account model, and directed acyclic graph-structured UTXO model. We identified the unique benefits of eUTXO as: the ability to bundle the transaction processing of non-conflicting input states, achieving parallelism at the validator nodes; and the ability to implement complex off-chain scaling solutions through smart contracts. This research examines the security impact of sharding when applied alongside an eUTXO ledger. To illustrate this we introduce S-EUTO, a novel proof-of-concept state-sharding protocol. It leverages distributed randomness to ensure unbiased node-to-shard distribution and introduces an input/output cross-shard transaction architecture to maintain global state synchronisation. Our model demonstrated the potential of sharding alongside eUTXO without compromising security

    An empirical comparison of the security and performance characteristics of topology formation algorithms for Bitcoin networks

    Get PDF
    There is an increasing demand for digital crypto-currencies to be more secure and robust to meet the following business requirements: (1) low transaction fees and (2) the privacy of users. Nowadays, Bitcoin is gaining traction and wide adoption. Many well-known businesses have begun accepting bitcoins as a means of making financial payments. However, the susceptibility of Bitcoin networks to information propagation delay, increases the vulnerability to attack of the Bitcoin network, and decreases its throughput performance. This paper introduces and critically analyses new network clustering methods, named Locality Based Clustering (LBC), Ping Time Based Approach (PTBC), Super Node Based Clustering (SNBA), and Master Node Based Clustering (MNBC). The proposed methods aim to decrease the chances of performing a successful double spending attack by reducing the information propagation delay of Bitcoin. These methods embody proximity-aware extensions to the standard Bitcoin protocol, where proximity is measured geographically and in terms of latency. We validate our proposed methods through a set of simulation experiments and the findings show how the proposed methods run and their impact in optimising the transaction propagation delay. Furthermore, these new methods are evaluated from the perspective of the Bitcoin network's resistance to partitioning attacks. Numerical results, which are established via extensive simulation experiments, demonstrate how the extensions run and also their impact in optimising the transaction propagation delay. We draw on these findings to suggest promising future research directions for the optimisation of transaction propagation delays
    corecore